Работа самодельного электроэрозионного станка для прожига

Про генератор писать. Мне видятся два типа генератора:

1. С трансформатором обратноходовой, он КЗ не будет бояться.

Минус: сложно регулировать одновременно и длительность импульса и напряжение импульса.

2. С накопительной ёмкостью подключаемой к рабочему промежутку.

Я выбираю вариант 2.

Можно и длительность импульса отрегулировать и напряжение (для зарядки ёмкости бустеп на 1 полевике) и длительность импульса. Полевики нынче сотни ампер через себя качают без вопросов, резать с ёмкостями под 200мкф на напряжении вольт 120 я не собираюсь, слишком грубо, ёмкость максимум 20мкф, а это значит разрядные токи около 200 ампер, значиит справятся транзисторы вроде

IXFN360N15T2

. Можно на тиристоре залепить разрядку, вроде такого:

P0515WC04C

.

Всё это под управлением банальной ATmega8, что бы рабочий цикл контролировать заряд/разряд отмерять длительности, измерять напряжения на рабочем промежутке и если упало то отводить электрод, а поднялось так подводить. На контроллере и PID регулятор организовать, что бы можно было отстроиться от инерционности механики и заложить в алгоритм переодическое «побалтывание» электродом, что бы вымыть продукты эрозии.

А вот механика, это более тонкий момент.

Если подача шаговиком, а промежуток держать магнитом, то это значительное усложнение с сомнительными бонусами.

Если подача и удержание промежутка магнитом управляемым ШИМ-ом, то становиться всё проще, но подачу 25мм не устроить, придётся переодически подходить и руками винтик подачи подкручивать. Не весело но терпимо для хоббийных целей и редкого использования.

Наконец на шаговике всё сделать, это более профессионально, но тянет за собой тот факт, что шаговик будет постоянно болтаться удерживая промежуток, а это как минимум шумно.

Отправлено спустя 3 минуты 52 секунды:

T-Duke писал(а):Источник цитаты

Хотя соленоид и представляет собой подобие линейного привода, но он слишком примитивен без адаптивного управления им.

Так думаю если только соленоид, то и управление с обратными связами. Как минимум в двумя: по напряжению на промежутке и по положению электрода на какой ни будь банальной оптике в виде фотодиода, светодиода и фигурной шторки. Естественно током не в тупую рулить, резисторами переменными, а ШИМ.

Коллеги посоветуйте электронную начинку для электроэрозионного станочка.
То есть нужен генератор. Здесь немного обсуждалось, но думаю в этом разделе буду обсуждать механику. А тут электронику.

В общем хочу просто оценить. Реально это или нет. Идея следующая, почитал книги, там еще старые принципы, если бы нарыть схему современного источника тока, было бы неплохо. Вот что я думаю, взять обыкновенную AVRу и мощный источник тока (есть два трансформатора от старого лампового телевизора, на каждом трансформаторе две катушки по 6,3В 6А. Перемотать и получить 6,3В 24А.). Выпрямить ток. Поставить какой-то мощный IGBT, MOFSET ключ, и попробовать пилить. На микроконтроллере поставить гальваническую развязку. Написать прогу для МК, которая регулирует ширину импульсов и частоту. Что-то типа ШИМ. Если ошибаюсь – поправьте.

У некоторых домашних мастеров возникает идея изготовить электроэрозионный станок своими руками для собственной мастерской. Желание объясняется тем, что иногда приходится обрабатывать детали с высокой твердостью. Производить отжиг для понижения прочности нельзя. Возможна деформация детали и будут нарушены требования, предъявляемые к качеству обработанной поверхности или иные характеристики.

В результате искровой эрозии производится прожиг сквозных отверстий или нанесение маркировки. Возможна обработка поверхности сложной формы, задаваемой электродом.

Основные особенности электроэрозии

Принцип работы эрозионной установки для металлических деталей основан на удалении мельчайших частиц обрабатываемого материала искровым разрядом. В результате однократного воздействия в точке контакта остается небольшая лунка. Чем мощнее искра, тем шире и глубже образуется углубление.

Если производить многократную искровую обработку, то процесс испарения мельчайших частиц в зоне искрения будет более заметным. Произойдет разогрев металла. Поэтому для снижения температуры подается охлаждающая жидкость.

Схема искрового генератора:

Электросхема устройства предусматривает использование:

  • диодного моста, он выпрямляет подаваемое переменное напряжение из сети 220 В;
  • лампа накаливания Н₁ на 100 Вт представляет активную нагрузку;
  • конденсаторы С₁, С₂, С₃ накапливают энергию для получения разового искрового разряда.

При включении схема в сеть загорается лампа Н₁, на конденсаторах С₁,…, С₃ накапливается электрический заряд. В момент полной зарядки конденсаторов прекращается течение электрического тока по цепи. Лампа Н₁ гаснет, что служит сигналом для возможности получения искры.

Электрод подводится к детали. Остается зазор, через который происходит пробой. На металле выжигается небольшая лунка.

Чтобы произвести следующий электрический разряд и выжигание еще одной порции металла, необходимо электрод отвести от детали. Потом происходит повторное заряжение конденсаторов.

Подобные действия происходят многократно. При каждом последующем действии электрод сильнее внедряется в металл, вырывая частицы на большей глубине.

Приведенная схема для полного заряда конденсаторов требует около 0,5…0,7 с времени. Величина тока в цепи заряда составляет примерно 0,42…0,47 А. При осуществлении контакта в зоне разряда ток возрастает до 7000…9000 А. При столь высоком значении происходит испарение 0,010…0,012 г металла (сталь).

Для высокого значения тока необходимо использовать медные провода сечением 8…10 мм². Чтобы прожечь отверстие, электрод изготавливают из толстой латунной проволоки. Чтобы запустить непрерывный процесс работы, нужно с частотой около 1 Гц подводить электрод к обрабатываемой детали.

Техническое задание на проектирование самодельного станка

Чтобы сделать самодельный электроэрозионный станок нужно изготовить ряд приспособлений, которые помогут автоматизировать производственный процесс.

  1. Нужна станина, на ней будет размещаться механизм перемещения электрода.
  2. Потребуется сам механизм, позволяющий периодически подводить и отводить электрод к обрабатываемому материалу.
  3. Для выжигания отверстий разных форм нужно иметь набор электродов. Специалисты рекомендуют использовать молибденовую проволоку.
  4. Для различных типов основного инструмента потребуется менять мощность устройства и силу тока. При разных режимах работы принципиальная электрическая схема должна позволять проводить регулирование величины разряда на электроде. В ней нужно предусмотреть изменение частоты пульсации напряжения.
  5. Для охлаждения детали (перегревать закаленную сталь нельзя, происходит отпуск со снижением твердости) в зону работы нужно осуществлять подачу охлаждающей жидкости. Чаще используют обычную воду или растворы солей. Вода попутно вымывает шлам (разрушенные частицы металла).

Внимание! В промышленных установках, например, японская фирма по производству станков «Sodick» использует ванны из ударопрочного стекла. В них организуется поток жидкости в зону обработки, а также отвод отработавшей воды и последующая фильтрация.

Разработка горизонтального электроэрозионного станка

Схема установки включает основные узлы и детали:

  • 1 – электрод;
  • 2 – винт фиксации электрода в направляющей втулке;
  • 3 – клемма для фиксации положительного провода от преобразователя напряжения;
  • 4 – направляющая втулка;
  • 5 – корпус из фторопласта;
  • 6 – отверстие для подачи смазки;
  • 7 – станина.

Установка небольшого размера, которую можно установить на столе. В корпусе 5 направляющая втулка 4 может перемещаться в обе стороны. Для ее привода нужен специальный механизм или приспособление.

К втулке 4 крепится электрод 1, плюсовой провод также присоединен с помощью клеммы 3. Остается только собрать предложенную схему в реальную установку в домашних условиях. В ней использована самая простейшая оснастка.

Краткое описание самодельной установки

В корпусе 2 установлен электрод 1. Его возвратно-поступательное перемещение производится электромагнитом из катушки 7. К направляющей втулке подведена клемма 3 (подается положительный потенциал).

На рабочем столе 4 крепится деталь, которую нужно обработать. На столе имеется клемма 5, к ней подключается отрицательный проводник. По трубке 6 внутрь корпуса подается смазка.

Через фильтры производится подключение преобразователя напряжения, от них положительный и отрицательный провода соединяются на соответствующих клеммах 3 и 5. На столе 4 фиксируется деталь, в которой можно проводить разные виды обработки, например, прожечь отверстие в закаленной детали.

Включив преобразователь, на токонесущих проводах будет получено рабочее напряжение. Дополнительно подается напряжение на индукционную катушку 7. Она создает вибрацию электрода 1, направляя его движение вправо и влево. Электрод 1 касается обрабатываемой детали. В зоне контакта возникает ток величиной 7000…9000 А.

При каждом движении инструмента в сторону детали выжигается небольшое количество металла. В течение 10…12 минут работы электроэрозионного станка в детали будет получено сквозное отверстие. Получено отверстие в хвостовике сверла. Обычным способом просверлить подобное отверстие довольно сложно.

Как усовершенствовать станок?

Изготовленный простейший станок представляет собой действующую модель. Его назначение – образование отверстий в закаленных деталях.

В дальнейшем нужно рассмотреть вариант с вертикальным расположением электрода. Тогда под него можно установить ванну. Процесс будет происходить без возможных неисправностей, связанных с наличием неубираемого шлама из рабочей зоны.

Нужно также рассмотреть дополнительные механизмы для плавной подачи инструмента. Возможно, потребуется осуществлять не только осевое перемещение, а также движение электрода в горизонтальной плоскости, чтобы проводить трехмерную обработку поверхности.

Любой простейший станок дает мысли к тому, как его в дальнейшем усовершенствовать и создать более удобный агрегат. Главное, сделать первый шаг и попробовать изготовить первый образец.

Видео: самодельный электроискровой станок.

Заключение

  1. Станок для электроэрозионной обработки металла позволяет выполнять доработку закаленных деталей, не снижая их прочности.
  2. Даже самый простейший станок, изготовленный из подручных материалов, позволяет выполнять ряд операций, которые невозможно выполнить другими инструментами и приспособлениями.