Электромагнитный реверсивный пускатель: виды устройств

Во время зарождения электротехники включение 3-фазных электродвигателей производилось с помощью обычных рубильников вручную. Рубильники не создавали безопасных условий, требовалось пульт управления соединять силовыми линиями. В течение дальнейшего прогресса развития процессов коммутации ученые изобрели такие устройства, как магнитные пускатели, которые не имели тех недостатков рубильника. Это коммутационное устройство обеспечивает подключение потребителя нагрузки дистанционно, дает возможность управления эксплуатацией оборудования.

Конструкция пускателя простая, так же, как и его принцип работы. Пускатель состоит из контактов двух видов: неподвижных и подвижных. При замыкании этих контактов электродвигатель запускается, а при разъединении контактов происходит остановка и выключение питания.

Разновидности

Магнитные пускатели предназначены в основном для управления работой 3-фазных электромоторов на дистанционном уровне. Основные операции, проводимые с помощью магнитных пускателей – это запуск, отключение или реверс.

Вспомогательной функцией пускателя вместе с тепловым реле является защита электродвигателя от излишних нагрузок. Имеются схемы пускателей с ограничителями напряжения на основе полупроводниковых элементов. По схемам подключения нагрузки бывают реверсивными и нереверсивными.

По типу расположения магнитные пускатели классифицируются:
  • Открытого типа. Располагают в защищенных шкафах, панелях, и других местах, не доступных для влаги, пыли и других вредных факторов.
  • Защищенного исполнения. Монтируются в помещениях с пониженным содержанием пыли в воздухе, исключающих доступ воды к устройству.
  • Влагонепроницаемого исполнения. Монтируются внутри зданий, снаружи под оборудованными навесами от воды и солнца.
Вспомогательная классификация
  • Блок с кнопками на корпусе пускателя. Пускатели без реверса имеют две кнопки: Пуск и Стоп, устройства с реверсом оснащены тремя кнопками, две из них те же, что и в прошлом виде, добавлена кнопка Пуска назад. Некоторые исполнения устройств предусматривают лампу, сигнализирующую включение.
  • Устройства со вспомогательными контактами сигналов и блокировок. Применяются в различных сочетаниях, как замыкающие или разъединяющие. Контакты бывают встроенными, либо выполнены на отдельной подставке. Иногда вспомогательные контакты применяются в общем составе схемы пускателя. В устройствах с реверсом с помощью дополнительных контактов выполняется электрическая блокировка.
  • Значение напряжения и тока силовой обмотки.
  • Тепловое реле. Его свойство – это ток номинала, при котором реле не срабатывает на средних настройках. Это значение тока может регулироваться в некоторых пределах от номинального значения тока.

Некоторые магнитные пускатели комплектуются ограничителями напряжения и другими блокировками.

Конструктивные особенности

Все устройство пускателя делится на две половины: верхнюю и нижнюю. В верхней половине расположены двигающиеся контакты вместе с камерой гашения дуги. Там же расположена и подвижная часть магнита. Она действует на силовые контакты.

Катушка находится в нижней части вместе с возвратной пружиной. Свойством пружины возврата является возвращение верхней половины в исходное состояние после отключения питания на обмотке. Так осуществляется разъединение силовых контактов.

В устройство двух половин электромагнита включены пластины Ш-образной формы. Они изготовлены из электромагнитной стали. Для катушки используется медный провод с расчетным количеством витков, которые рассчитаны на эксплуатацию с напряжением питания определенных значений, начиная от 24 вольт и до 380 вольт. При поступлении напряжения в обмотке образуется магнитное поле. Две половины пытаются соединиться, образуется замкнутый контур. При отключении напряжения магнитное поле также исчезает, верхняя половина отходит на свое первоначальное место под действием пружины.

Принцип действия

Название устройства говорит о его способе работы. Он действует по принципу электромагнита, во время прохождения тока по катушке. После притягивания контактов электродвигатель запускается.

1 — Подвижные контакты
2 — Подвижный якорь
3 — Пружины
4 — Катушка
5 — Стационарный сердечник
6 — Подвижный сердечник
7 — Стационарные контакты

Общее устройство состоит из основной части и якоря, который двигается по направляющим. Проще сказать, что все магнитные пускатели выполнены в виде большой кнопки с клеммами силовых контактов, и неподвижных контактов.

Двигающаяся часть имеет мостик с контактами, который обеспечивает разрыв цепи в двух местах, для выключения напряжения. Также мостик служит для качественного соединения проводов во время подключения схемы в действие. Система проверяется вручную. Надавливают на якорь и чувствуют усилие пружин, которое при работе преодолевается электромагнитом. При отпускании якоря контакты возвращаются назад.

В работе подобное управление не требуется, оно нужно для контроля. Реально применяется дистанционная форма подключения электромагнитным полем, которое возникает в обмотке от электрического тока. Шихтованный магнитопровод обеспечивает хорошую проводимость тока.

Когда в цепи отсутствует электрический ток, то вокруг обмотки магнитное поле исчезает, что приводит к отходу якоря в первоначальное положение. При подаче напряжения происходит обратный процесс. Рабочее включенное положение якоря влияет на функционирование устройства. В таком положении должно быть качественное соединение контактов. При малейшем ослаблении пружин контакты начинают подгорать, нагреваться, происходит отгорание концов проводов.

Установка и подключение

Для возможности качественной эксплуатации пускателей, их установку проводят на ровной неподвижной поверхности, вертикально. Устройства с тепловым реле нужно ставить так, чтобы не было разницы температуры с внешней средой.

Монтаж с нарушением приводит к ложным срабатываниям. Поэтому нельзя устанавливать магнитные пускатели в местах с вибрацией, ударами. Устройства с током номинала более 150 ампер при запуске сильно вибрируют и сотрясаются.

Корпус теплового реле может нагреться от других устройств. Это отрицательно действует на правильность работы пускателя. Поэтому не рекомендуется размещать пускатели рядом с горячим оборудованием.

При соединении провода с контактом пускателя, его конец загибают в виде кольца. Это не дает возникнуть перекосу пружинных шайб в зажиме. При подключении двух проводов с одним сечением, их располагают по двум противоположным сторонам от винта.

Перед монтажом концы проводов лудят. В многожильных проводах перед тем, как проводить лужение, концы скручивают. Концы алюминиевых проводов чистят надфилем, покрываются специальной пастой. Подвижные контакты и части пускателя смазывать запрещается. Перед запуском магнитные пускатели осматривают снаружи и контролируют исправность частей. От руки двигающиеся части должны легко перемещаться. Схема соединения сверяется.

Техническое обслуживание

Для качественного ухода за пускателем нужно знать возможные признаки поломок устройства. Обычно это высокая температура корпуса, сильное гудение.

Высокая температура устройства чаще всего связана с замыканием обмотки между витками. При осмотре катушки не должно быть трещин, нагара, повреждений, оплавления. В таких случаях необходима замена катушки. Чрезмерный нагрев происходит из-за увеличения напряжения питания выше номинала, при перегрузке, плохое качество контактов, их сильном износе. Сильное гудение пускателя может возникнуть по нескольким причинам. Чаще всего нужно проверить плотность прилегания якоря. Неплотность может возникнуть из-за загрязнения поверхности. Еще одной причиной может стать недостаточное напряжение сети, снижение его более 15 процентов, а также заедание подвижных элементов.

Для предотвращения таких поломок нужен постоянный уход. В общем, магнитные пускатели не нуждаются в дорогостоящих работах. Нельзя допускать внутрь грязи, влаги и пыли. Необходимо регулярно контролировать плотность прилегания и качество контактов. Составляют перечень работ по техническому уходу и ремонту электромонтерами-ремонтниками.

Программа обслуживания
  • Внешний осмотр на повреждения, сколы корпуса, удаление грязи. Сколы и повреждения появляются от длительной вибрации, неправильного монтажа, дефектами. Если корпус поврежден настолько, что это препятствует его закреплению на поверхности, то корпус подлежит замене. Особое внимание уделяется контролю наличия всех пружинок и контактов.
  • Ревизия механических деталей. Контролю подвергается пружина для разрыва контактов. Она не должна быть мягкой и слишком сжатой. При проверке хода якоря не допускаются заклинивания. Контроль хода проводится от руки.
  • Чистка контактов – это мероприятие не должно проводиться, если магнитный пускатель исправен. Слой с хорошей проводимостью на контактах очень малой толщины. При каждой чистке надфилем контакты скоро сточатся. Чистка допускается лишь при возникновении нагара. При замыкании контактов должно быть плотное прилегание, без наклонов, смещений. Иначе нужна регулировка.
  • Если в корпусе пускателя есть детали из металла, то нужно проверить отсутствие соединения их с силовыми контактами. Необходимо также прозвонить все силовые контакты между собой на отсутствие замыканий. Для этого пользуются тестером. Сопротивление изоляции не должно быть менее 0,5 Мом.
Похожие темы:
  • Магнитное поле. Источники и свойства. Правила
  • Электромагнитные реле. Разновидности и принцип действия
  • Устройства плавного пуска
  • Виды реле и применение

Реверсивный пускатель часто встречается в оборудовании, обеспечивающем работу механизмов и агрегатов, в которых есть функциональное назначение изменения вращения вала электрического двигателя. Схема подключения магнитного пускателя с реверсивным пуском электродвигателя всегда является предметом изучения электриков-любителей и профессионалов для создания собственных конструкций.

В промышленности существует два вида магнитных пускателей: для прямого пуска асинхронного электродвигателя, а также для реверсного пуска электрического двигателя.

Нереверсивное подключение электродвигателя

Специалисты для лучшего понимания реверсного пуска электродвигателя предлагают рассмотреть, как работает нереверсивная схема включения электрического двигателя. В конкретном примере рассматривается пускатель с катушкой управления 220 вольт. Электродвигатель подключается к цепи по следующей цепочке:

  • автоматический трехфазный выключатель;
  • силовые клеммы пускателя (КМ);
  • тепловое реле (ТР).

Катушка управления пускателя (КМ) с одной стороны подключена к рабочему нулю, а другая сторона через цепочку кнопок управления «Пуск» и «Стоп» — к фазе цепи.


Подключение катушки 220 вольт

Пост управления (КМ) имеет две кнопки: «Пуск» и «Стоп»:

  • у кнопки «Пуск» контакты нормально разомкнутого вида;
  • у кнопки «Стоп» контакты нормально замкнутого вида.

Нормально разомкнутый контакт катушки управления включается параллельно пусковой кнопке. Тепловое реле в этой схеме играет для электродвигателя защитную функцию от перегрузки и включено в разрыв питающей фазы. Контакт нормально замкнутый (ТР) включается в цепь катушки управления (КМ).

После включения автоматического трехфазного выключателя напряжение поступает на силовые контакты пускателя и в управляющую цепь катушки — схема приведена в рабочее состояние.

Нереверсивный запуск

Для осуществления пуска электрического двигателя оператору необходимо нажать кнопку «Пуск», тогда в управляющую цепь катушки поступает напряжение, цепь замыкается и срабатывает, втягивая якорь с одновременным замыканием шунтирующего контакта катушки управления. Силовые контакты электрического двигателя получают питание, он начинает вращаться.

Когда оператор отпускает кнопку «Пуск», обмотка (КМ) получает питание от его вспомогательного контакта, двигатель работает.

Остановка

Оператору для остановки нереверсивного двигателя надо нажать кнопку «Стоп», в этом случае происходит разрыв питания катушки управления (КМ), шунтирующий контакт размыкается, якорь катушки приходит в начальное положение, тем самым размыкая силовые контакты. На электродвигателе пропадает напряжение, он останавливается.

Кода отпускается кнопка «Стоп», контакт управляющей обмотки остается разомкнутым, ожидая следующего пуска электросхемы.

Как происходит защита двигателя при нереверсивном пуске

Защита электрического двигателя реализуется при помощи биметаллических контактов (ТР), они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Все контакты пускателя (КМ) возвращаются в начальное положение, а двигатель останавливается. Ниже представлена принципиальная схема подключенного электродвигателя с защитой.


Установка монтажных предохранителей в цепочку защиты

В схеме защиты работы электрического двигателя предусматривается дополнительная защита управления пуском и остановкой механизма, это включение в цепь предохранителя, который реагирует на межвитковое замыкание катушки управления пускателя (КМ).

Устройство магнитного пускателя для реверсного пуска

Реверсивный магнитный пускатель имеет функциональное назначение — запуск электрического двигателя, а также других механизмов, у которых есть функциональное назначение работы в прямом и обратном направлении с изменением вращения вала двигателя. Пускатель выполняет коммутационную функцию силовыми контактами и подачу напряжения на двигатель.

В отличие от контакторов пускатель используется как защита при частых пусках и остановках механизмов и устройств. Пускатели марки ПМЛ широко применяются в схемах реверса трехфазного двигателя для реализации дистанционного пуска в насосных станциях, в башенных кранах и вентиляционных системах, в других механизмах.


Пускатель марки ПМЛ

Магнитный пускатель в своей конструкции имеет следующие функциональные составляющие:

  • электромагнитная часть с катушкой и подвижным якорем,  нормально разомкнутый магнитопровод;
  • главные силовые контакты, назначение которых — соединение и отключение фаз электродвигателя при пуске и остановке. Реверсивные магнитные пускатели в своем устройстве могут иметь контакты в верхней части конструкции и на стороне обмотки якоря (КМ);
  • блок-контакты функционально предназначены для коммутации цепи управления;
  • переход в начальное положение пускатель осуществляет при помощи возвратного механизма, это пружина, которую якорь катушки управления (КМ) возвращает в начальное положение, размыкая все контакты.

Как подключается реверсивный пускатель

Схема подключения реверсивного магнитного пускателя необходима для работы электрического двигателя в прямом, а также в обратном направлении. Подключить этот вид пускового устройства для специалиста не составит труда. Очень часто в промышленности реверсивное подключение используется для работы станочного оборудования разного вида (сверлильный, токарный станок и др.). Реверсивная схема реализуется в работе лифтов не бытового назначения.


Схема реверсивного пуска асинхронного двигателя

Реверсивные пускатели имеют отличие в подключении, это дополнительная цепочка управления, а также разница соединения силовой части. В схеме реализована защита от короткого замыкания, это контакты КМ1.2 и КМ2.2, которые имеют нормально замкнутый вид и размещены на пускателях КМ1 и КМ2. Реверсивная схема, представленная на фото, имеет цветовое отличие силовой и управляющей цепей:


Реверсивная схема подключения двигателя

Как происходит включение

Схему реверса асинхронного двигателя можно образно разбить на этапы включения: выключатель (QF1) переводим в рабочее положение, в этом случае все реверсивные магнитные пускатели на силовых контактах получают напряжения КМ1 и КМ2 и остаются в таком положении.

Одна фаза задействована в цепи управления обмоток пускателей, ее прохождение:

  • защитный автомат (SF1) — кнопка «Стоп» (SB1) — контактная группа №3 (функционируют с кнопками (SB2) и (SB3);
  • контакт 1ЗНО в пускателях КМ1 и КМ2 становится в ожидание — у него дежурное значение;
  • пускатель реверсивный готов к работе.


Схема подключения электродвигателя

Как происходит переключение

Схема реверса электродвигателя предусматривает следующие манипуляции в пускателе: когда оператор нажимает кнопку SB2, он дает питание управления катушкой пускателя (КМ1), далее срабатывают нормально разомкнутые контакты и размыкаются нормально замкнутые контакты в конфигурации КМ1, катушка обеспечивает «подпитку», и питание через силовые контакты поступает на мотор, он начинает вращение.

Если возникла рабочая необходимость сделать реверс электродвигателя, оператору надо поменять приложение силовых контактов (фаз), это реализуется при помощи КМ2. Важно! Всегда, когда делается подключение двигателя для обратного вращения, должна происходить его остановка, это достигается отключением в управлении обмотки КМ1 фазы №1, контакты пускателя занимают начальное положение, электродвигатель обесточен.

Оператор, нажимая кнопку SB3, подает питание на управление обмоткой КМ2, а оно изменяет включение силовых контактов «фаза №2» и «фаза №3» для подключения трехфазного электродвигателя. Он начинает вращение в другом направлении до тех пор, пока не произойдет размыкание контактов управления обмоткой.

Защита работы реверсного включения электродвигателя

Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить. Это реализуют в схеме включения нормально замкнутые контакты, которые «подстраховывают» работу оператора и не допускают межфазного замыкания в электрическом двигателе, когда происходит реверсирование его подсоединения. В рассмотренной схеме подключения реверсного пускателя видно, что работать может только один пускатель.

Ежедневно происходит работа по подключению электродвигателей прямого и обратного вращения, схема включения пускателей не составляет сложностей для квалифицированных электриков. Необходимо всегда помнить, что должна реализовываться функция остановки двигателя перед его обратным вращением.

Обычно мы видим это устройство в виде аккуратной коробки с двумя кнопками: «пуск» и «стоп». Если снять верхнюю крышку, внутри обнаружится коммутатор довольно сложной конструкции, который может выполнять несколько задач (как по очереди, так и одновременно).

Это электромагнитный пускатель. Возникает вопрос: а зачем создавать сложные электротехнические устройства, если нужно всего лишь замкнуть два (или больше) контакта? Есть кнопки с фиксацией, рычажные включатели, защитные автоматы, рубильники. Рассмотрим типовое применение магнитного пускателя: включение мощной электроустановки (например, асинхронный электродвигатель).

  • Необходима мощная контактная группа с дугогасителями, соответственно потребуется большое усилие для смыкания контактов. Ручной привод будет достаточно громоздким (использование классического рубильника не всегда вписывается в эстетику рабочего места).
  • Ручными переключателями сложно обеспечить оперативное изменение режима работы (например, изменение направления вращения мотора). Устройство магнитного пускателя позволяет собрать такую схему подключения.
  • Организация защиты. Любой автомат с аварийным отключением не рассчитан на многократное включение. Назначение (пусть и не основное) магнитного пускателя не только многократно производить коммутацию, но и отключать цепь питания при перегрузках и коротком замыкании. При этом, у него есть неоспоримое преимущество перед иными коммутаторами. Отключение необратимо: то есть, после аварийного размыкания контактов, или кратковременного прекращения подачи энергии, рабочие контакты не возвращаются в положение «ВКЛ» по умолчанию. Принцип работы магнитного пускателя подразумевает только принудительное повторное включение.

Устройство и принцип работы устройства

Главное отличие пускателя от любого другого коммутационного устройства — подключенное к нему электропитание одновременно является и управляющим. Как это работает?

Рассмотрим общий принцип действия магнитного пускателя с помощью иллюстрации:

  • Силовые контакты (3), через которые проходит питание с высоким током на потребителя (электроустановку).
  • Они соединяются между собой с помощью контактных мостиков (2). Сила нажатия обеспечивается пружинами (1), которые представляют собой особым образом отформованную стальную пластину. Сами контактные группы изготовлены из медных сплавов, для лучшей электропроводности.
  • Пластиковая траверса (4), на которой закреплены мостики (2), соединена с подвижным якорем (5). Вся конструкция может перемещаться вертикально с помощью внешнего усилия (кнопки), и возвращается обратно после прекращения давления на нее.
  • С помощью катушки электромагнита (6) создается магнитное поле, которое прижимает подвижный якорь (5) к неподвижной части сердечника (7). Силы достаточно, чтобы преодолеть сопротивление возвратной пружины.
  • Питание на электромагнит подается с помощью дополнительных контактов (8). Чтобы обеспечить правильную работу схемы, питание на эти контакты заводится параллельно силовым (3), от единого источника. Для размыкания всей контактной группы предусматривается кнопка отключения, которая устанавливается в цепь дополнительных контактов.

Виды контакторов

По оснащению средствами защиты: практически все модели включают в себя блок термореле, который размыкает цепь дополнительных контактов в случае перегрузки по току. В этом смысле принцип работы магнитного пускателя не отличается от защитного автомата. После аварийного отключения, и остывания защитной группы (цепь питания обмотки электромагнита восстанавливается), замыкание силовых контактов не происходит. Предполагается, что оператор устранит причину возникновения аварийной ситуации, и произведет повторный пуск электроустановки.

По способу замыкания контактов, имеются следующие виды магнитных пускателей:

  1. Прямого подключения, то есть с одной группой силовых контактов. Он работает по принципу: «вкл» или «выкл», плюс защита от перегрузки или короткого замыкания.
  2. Реверсивного подключения. Электромагнитный пускатель такого типа оснащен двумя группами контактов, с помощью которых можно комбинировать линии питания. Например, чередование фаз для асинхронного электромотора. При замыкании различных групп контактов, вал электродвигателя вращается в разные стороны, то есть происходит реверс.
  3. Работающие только на замыкание силовых контактов, либо имеющие нормально замкнутые и нормально разомкнутые контактные группы.Такие коммутаторы могут управлять (в противофазе) двумя электроустановками. Одно устройство подключается, второе синхронно обесточивается.
  4. По количеству контактов силовой группы:
    • Двух контактные (для однофазных потребителей).
    • Трех контактные (подключаются только фазные группы, нейтраль всегда соединена). Это самая распространенная модель пускателя, к ней можно подключать как одно — так и трех фазные электроустановки.
    • Четыре и более контакта в силовых группах. Под группой подразумевается либо нормально замкнутый, либо нормально разомкнутый комплект. Применяются редко, только в специальных устройствах, работающих по особой схеме подключения.

    Большинство пускателей выглядят так:

    Силовые контакты (три фазы), в одной плоскости расположены дополнительные, для питания обмотки.

    Или так:

    Для удобства монтажа, дополнительные контакты вынесены на отдельную площадку, ниже и сбоку.

Схемы подключения

Для чего нужен магнитный пускатель? Преимущественно для организации безопасного подключения (и управления) асинхронных трехфазных двигателей. Поэтому рассмотрим варианты работы схемы при различных условиях. На всех иллюстрациях присутствует защитное реле, обозначенное литерой «P». Биметаллические пластины, приводящие в действие аварийный размыкатель (установленный в цепи управления), располагаются на силовых линиях контактной группы. Они могут размещаться на одном или нескольких фазных проводниках. При перегреве (он возникает при превышении нагрузки или банальном коротком замыкании), управляющая линия разрывается, питание на катушку «KM» не подается. Соответственно, силовые контактные группы «KM» размыкаются.

Классическая схема прямого включения трехфазного электродвигателя

Схема управления использует питание от напряжения между двумя соседними фазными линиями. При нажатии кнопки «Пуск», с помощью основного ее контакта замыкается цепь катушки «KM». При этом все контактные группы, включая дополнительные контакты в цепи управления, соединяются под управлением электромагнита катушки. Разомкнуть цепь можно двумя способами: при срабатывании аварийного реле, или нажав на кнопку «Стоп». В этом случае магнитный пускатель возвращается в исходное положение «все выключено» (или в случае с двумя категориями контактов, нормально замкнутые группы будут подключены).

Этот же вариант подключения, только управляющая цепь соединяется с фазой и нейтралью. С точки зрения работы пускателя, разницы нет. Так же точно срабатывают кнопки, и защитное термореле.

Реверсивное подключение трехфазного электродвигателя

Как правило, для этого применяются два электромагнитных пускателя, в которых выхода фазных контактов комбинированы со сдвигом. Устройства скомбинированы в один коммутатор, поэтому его можно рассматривать как единый элемент.

В зависимости от того, какая контактная группа подключена к электродвигателю, его ротор крутится в одну либо другую сторону. Такой вариант незаменим при использовании на конвейерах, станках, и прочих электроустановках, в которых предусмотрено 2 направления вращения (движения).

Как работает эта схема на практике? Смотрим иллюстрацию:

Единая схема управления с двумя группами кнопок пуска: «Вперед» и «Назад». Каждая из них включает соответствующую катушку электромагнита. Почему схема общая? Кнопка «Стоп» по условиям безопасности должна быть единой. Иначе при возникновении аварийной ситуации, оператор потеряет драгоценные секунды в поисках необходимой кнопки (для «Вперед» или для «Назад»).

Проверка работоспособности магнитного пускателя и его ремонт

Проверяется устройство путем подачи питания на управляющие (дополнительные, или блок контакты). Если происходит смыкание рабочей группы, выполняется прозвонка ее контактов с помощью мультиметра. Затем провоцируется короткое замыкание, для проверки защитного реле.

Любой коммутационный прибор состоит из схожих по конструкции элементов. Поэтому ремонт магнитного пускателя выполняется по общему принципу: поиск неисправного узла, восстановление или замена.

Механические части (мостик, прижимная либо возвратная пружина) меняются, контакты можно зачистить. Катушка управления перематывается, или производится восстановление сгоревшего витка с помощью пайки.

Видео по теме

Электромагнитный пускатель – устройство, очень часто являющееся составляющей деталью электрических схем. Как правило, используется трехфазный электромагнитный пускатель 380В в схемах управления электромоторами. Однако кроме коммутации цепей электродвигателя, этот же элемент может успешно применяться для других целей.

Рассмотрим типовое устройство и принцип действия электроприбора. Кроме того, обозначим критерии выбора пускателия, расшифруем его маркировку и опишем нюансы подключения ЭМП к электрической цепи.

Особенности электромагнитного пускателя

Конструкция электромагнитного пускателя (ЭМП) не отличается высокой сложностью исполнения. Но этот фактор никак не снижает надежности прибора.

Как устроен прибор?

Критерий надежности, по большей части, устанавливается правильным подключением цепей и точным выбором нагрузки.

Если эти критерии соблюдаются, прибор в большинстве случаев действует безупречно длительное время.

Классическое исполнение электромагнитных приборов – пускателей, которые нашли широкое применение в области электроснабжения. Существует масса вариантов исполнения таких устройств, отличающихся формами и размерами

Классическое исполнение включает в себя следующие элементы:

  1. Корпус разборный из двух половин.
  2. Катушка индуктивности.
  3. Магнитопровод.
  4. Коммутирующее подвижное шасси.
  5. Группа контактов основных.
  6. Группа контактов вспомогательных.

Элементом магнитного пускателя, отвечающим за организацию коммутации силовой цепи, выступает подвижное шасси, объединенное с одной частью (подвижной) магнитопровода.

Само шасси выполнено из диэлектрического материала, а в качестве замыкающих контактов используются металлические (латунные) пластины. По концам пластин расположены контактные пятачки, выполненные из тугоплавких металлов, обычно это сплав серебра.

Разобранное коммутационное электрическое устройство с полным набором деталей, входящих в конструкцию. Это простой классический прибор, тогда как более совершенные современные устройства имеют несколько усложненное исполнение

Неподвижная часть магнитопровода жёстко крепится внутри второй половины корпуса электромагнитного пускателя. На эту часть магнитопровода одевается катушка индуктивности и устанавливается пружина возврата.

Вторая часть корпуса прибора также наделяется контактами силовой и вспомогательной групп. Эти контакты закреплены на корпусе жестко при помощи винтов.

Так выглядит контактная силовая группа одной из конструкций пускателя в классическом исполнении. Между тем конструктивное исполнение приборов отличается многообразием конфигурации, что не позволяет указывать конкретно на отдельные детали

Устройство стандартного магнитного пускателя предполагает объединение двух половин корпуса, в результате чего объединяются также в единую конструкцию две половины Ш-образного магнитопровода.

При этом, за счёт пружины возврата, между половинами магнитопровода остается небольшой зазор, основные контактные группы в таком положении остаются разорванными.

Принцип действия ЭМП

Принцип действия прибора основан на эффекте электромагнитной индукции. Если на катушке, расположенной внутри пускателя, нет напряжения, магнитопровод остаётся в положении «с зазором», главные контакты разорваны.

Катушка индуктивности классического прибора, сила магнитного поля которой притягивает контактное подвижное шасси. И пружина металлическая обыкновенная, за счёт которой подвижное шасси отжимается

Когда же через катушку пропускается электрический ток, под действием магнитного поля вторая (подвижная) часть магнитопровода преодолевает силу пружины и притягивается к первой (неподвижной) части.

Соответственно, главные контактные группы пускателя замыкаются пластинами подвижного шасси.

Обратный процесс очевиден – когда напряжение снимается с терминалов катушки индуктивности, магнитное поле прекращает действие, под силой пружины возврата подвижное шасси и вторая часть магнитопровода отталкиваются. Соответственно, магнитный пускатель возвращается в состояние разрыва контакта.

Вторая – верхняя подвижная часть сборки, благодаря которой выполняется принцип коммутации. Справа также показаны отдельные контакты силовой группы, демонтированные с посадочных мест изолированного корпуса

Следует отметить – исходя из конфигурации электроприбора, схема контактных групп может иметь самое разное строение. Особенно касательно вспомогательных контактов, которые могут находиться в замкнутом или разомкнутом состоянии в противовес состоянию главных контактов прибора.

Особенностью современных конструкций магнитных пускателей является модернизация схемы управления катушкой индуктивности.

Если исполнением прежних «устаревших» приборов предполагалась прямая подача напряжения на катушку, взятого от одной из фаз, теперь всё чаще используются электронные схемы.

Конструктивное исполнение коммутатора электрических линий, где используется дополнительная электронная плата в цепи питания катушки индуктивности. После обработки платой, катушка получает напряжение питания постоянного тока

Так, например, продукты известной компании «ABB» оснащаются электронной схемой стабилизации напряжения, подводимого к терминалу катушки индуктивности магнитного пускателя.

Управлению катушкой через электронную схему характерно то, что переменное напряжение предварительно выпрямляется и затем формируется импульсный сигнал. Такой подход обеспечивает увеличение срока службы и улучшение стабильности действия.

Критерии правильного выбора пускателя

Учитывая несколько широкий ассортимент изделий подобного рода, который присутствует на коммерческом рынке, правила подбора становятся более чем актуальными для конечного пользователя.

Технические параметры прибора

Точный и правильный выбор магнитного пускателя на 380 вольт, к примеру, для электродвигателя, обеспечит бесперебойную работу мотора, и главное, – безопасность электрической системы.

Технико-эксплуатационная табличка, присутствующая на каждом фирменном приборе, – это основа подбора устройства, в котором нуждается потенциальный электрик. Но кроме этого критерия, актуальны также другие

Подбирается конкретный прибор, конечно же, исходя из технико-эксплуатационных параметров предполагаемой к подключению нагрузки. Существенное влияние на правильный выбор оказывает и принадлежность изделия к тому или иному бренду.

Следует отметить – на рынке присутствует достаточно высокий процент продукции низкого качества. Поэтому бренд, в этом случае, является важным критерием подбора.

Маркировка и тип крепления изделий

Каждый прибор, во всяком случае, фирменный, имеет соответствующую маркировку непосредственно на корпусе. Опираясь на технические сведения, содержащиеся в маркировке, достаточно просто выбрать коммутационное устройство в точном соответствии с требуемыми параметрами.

Классическая маркировка, присутствующая на фирменных приборах, выпускаемых под логотипом «ABB». Используя алгоритм расшифровки, совсем несложно подобрать требуемое устройство

Так, коммутационные устройства той же фирмы «ABB» имеют примерно следующую систему маркировки:

А-26-30-10

Расшифровывается строка кодировки следующим образом:

  • «А» – буквенное обозначение указывает на тип прибора;
  • «26» – второй цифровой маркер определяет номинальный ток в амперах;
  • «30» – третье обозначение указывает число силовых контактов;
  • «10» – последнее число характеризует число вспомогательных контактов.

При этом для двух последних позиций списка характерным является разделение цифр. То есть, если указывается цифра «30», это означает наличие трех (3) нормально открытых контактов и отсутствие (0) нормально закрытых контактов.

Аналогичная расшифровка и для цифрового кода (10), указывающего на дополнительные контактные группы.

Вариант «посадки» (установки) электроприбора на DIN-рейке широко распространен, но вместе с тем продолжает практиковаться традиционный вариант подключения через винтовое соединение

Подбирая исполнение магнитного пускателя на 380В под соответствующие цели, следует обратить внимание на технику крепления прибора.

Как правило, значительная доля устройств современной конфигурации выполняется с учётом установки на DIN-рейке. Но также существуют конструктивные исполнения приборов под крепление традиционным образом – винтами.

Нюансы подключения ЭМП в составе схемы

Классическая схема подключения ЭМП не выделяется особыми сложностями. Фактически, если не учитывать вспомогательные группы контактов, требуется подключать три основных линии – в схеме 380 вольт присутствует три фазы.

В общей сложности – это 6 контактов – три входных и три выходных, плюс два контакта цепи катушки индуктивности.

Электрическая схема включения пускателя: А – входная цепь (380 вольт); В – выходная цепь (электродвигатель); 1 – пускатель магнитный; 2 – терминал питания катушки индуктивности; 3 – вспомогательные контакты; 4 – шина заземления; 5, 6 – кнопки управления (+)

Однако реальное включение в электрическую цепь зачастую сопровождается довольно сложной схематикой, где участвует большое число вспомогательных контактов.

Как правило, современные схемы включения тех же электромоторов предполагают дополнительный ввод устройств защиты – тепловое реле и другие.

Сборка коммутационного устройства в паре с тепловым реле. Подобный вариант включения применяется очень часто, так как обеспечивает дополнительную защиту цепей нагрузки и самой нагрузки

Выполняя подключение цепей к ЭМП, рассчитанному на 380В следует придерживаться следующих правил:

  • подключать при полном отсутствии напряжения;
  • входные цепи подключать через автоматический выключатель;
  • использовать сечение провода, оптимально подходящее под контакт;
  • выполнять затяжку винтов до упора, но без применения чрезмерной силы;
  • проверять целостность обмотки катушки (омметром) перед подключением линии питания;
  • проверять сводный ход подвижного шасси после выполнения всех подключений.

Как правило, коммутационные приборы подобного типа устанавливаются внутри шкафа, предназначенного под монтаж электрических линий. Исполнение шкафа – с дверкой для удобства обслуживания и ограничения доступа посторонних лиц.

Выводы и полезное видео по теме

Полноценный информативный расклад по магнитному пускателю через видеоролик, записанный известной торговой компанией электронных компонентов.

Автор ролика подробно и в доступной форме раскрывает сущность коммутационного устройства:

Устройства коммутации, подобные электромагнитному пускателю для трехфазных сетей, находят применение в промышленной, хозяйственной и бытовой сфере довольно часто. Поэтому полезно своевременно изучить информацию относительно таких приборов – как с ними работать, как подключать, как определять под установку и т.д.

Есть, что дополнить, или возникли вопросы по выбору и подключению электромагнитного пускателя? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.